Saturday, August 22, 2009


LARC is also developing customised variations of piezoelectric materials. These substances link electric voltage to motion. If you contort a piezoelectric material a voltage is generated. Conversely, if you apply a voltage, the material will contort.
Scientists can use such properties to design piezoelectric materials that function as strain sensors or as "actuators" -- devices that create small motions in machines, like the moving of wing flaps.
Combined with micro-electronics, these materials could lead to a radical advance in airplane design.
"When we look 20 years into the future, we see airplanes that have distributed self-assessment and repair in real time," McGowan said.
"To make this technology possible, you would need to distribute these actuators and sensors throughout the wings. That's similar to how the human body operates. We have muscles and nerves all over our bodies -- so we are aware of what's happening to our bodies and we can respond to it in a number of ways."
The resemblance to biology doesn't end there. One avenue of Morphing Project research is to examine how nature does the things that it does well. Scientists hope they can learn lessons from this tutelage to improve their own designs.
"Nature does some things that we can't even get close to doing. Birds are so much more manoeuvrable than our airplanes are today. Birds can hover, they can fly backwards and sideways. And insects -- oh forget it! -- upside down, loop-de-loop, all sorts of things. We can't even get close to that [yet]," McGowan said.

No comments:

Post a Comment